Description
A technology was designed to produce nicotinic acid by direct oxidation of β-picoline by atmospheric oxygen. The process is carried out in a tubular reactor using a highly selective oxide catalyst. Extraction of crystalline nicotinic acid from the reaction mixture is performed in a crystallizer pan immediately after the reactor. The content of the main component in the product is not lower than 99.5%. Reburning of unreacted β-picoline and traces of uncondensed reaction products is carried out in a separate reactor using an oxide catalyst. The employed ring-shaped catalyst is produced by a nonwaste technology and ensures a yield of nicotinic acid of up to 85%.

Technical specifications
Expenditure of materials and electric power in production of 1 kg of nicotinic acid:
- β-picoline [kg] 0.91 – 0.93
- catalyst [kg] 0.001
- electric power [kW/hr] 0.9 – 1.0
- steam [kg] 2.8 – 3.1

Technical appraisal and economic benefits
- lack of sewage, solid waste, and toxic gas emissions;
- minimum number of process stages and process continuity;
- low power consumptions;
- use of standard equipment.
No foreign analogs of the technology are available

Application areas
Medicine, pharmaceutics, agriculture, food and cosmetic industries.
Development stage
A production plant with a capacity of 500 tons nicotinic acid per year has been designed (Khimplast company, Novosibirsk).
The launching of the first phase of the project with a capacity of 200 tons/year has been completed; batches of nicotinic acid have been produced.

Patent situation

Commercial offers
Sale of licenses for the process.
Delivery of the catalyst.

Estimated cost
To be negotiated

Contacts
Dr.Sc. Valentina I. Simagina, Head of Coordination Laboratory,
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
5, Prosp. Akademika Lavrentieva, Novosibirsk 630090, Russia
Phone: (383) 330-73-36
Fax: (383) 330-80-56
E-mail: bic@catalysis.nsk.su
http://www.catalysis.nsk.su